12 aprilie 2016

4. Tensiunea şi curentul

• Electronii pot fi „motivaţi” să se deplaseze printr-un conductor de către aceeaşi forţă prezentă în cazul electricităţii statice • Tens... thumbnail 1 summary
• Electronii pot fi „motivaţi” să se deplaseze printr-un conductor de către aceeaşi forţă prezentă în cazul electricităţii statice
• Tensiunea
• Tensiunea, ca şi expresie a energiei potenţiale, se măsoară tot timpul între două puncte. Câteodată se mai numeşte şi cădere de tensiune este măsura energiei potenţiale specifice (energie potenţială pe unitate de sarcină electrică) dintre două puncte. În termeni non-ştiinţifici, este măsura „împingerii” disponibile pentru motivarea electronilor
• Când o sursă de tensiune este conectată la un circuit, tensiunea electrică determină o deplasare a electronilor prin acel circuit, deplasare ce poartă numele de curent
• Într-un circuit format dintr-o singură buclă, valoarea curentului este aceeaşi în oricare punct al circuitului
• Dacă un circuit ce conţine o sursă de tensiune este întrerupt, întreaga tensiune electrică se va regăsi la capetele firelor unde a avut loc întreruperea
• Căderea de tensiune desemnată prin +/- se numeşte polaritate. Este de asemenea relativă, ea depinde de ambele puncte la care se face referire.

Dezechilibrul de sarcină

Precum am menţionat mai sus, doar un drum continuu (circuit) nu este suficient pentru a putea deplasa electronii: avem de asemenea nevoie de un mijloc de „împingere” a lor prin circuit. La fel ca mărgelele dintr-un tub sau apa dintr-o ţeavă, este nevoie de o forţă de influenţă pentru a începe curgerea. În cazul electronilor, această forţă este aceeaşi ca şi în cazul electricităţii statice: forţa produsă de un dezechilibru de sarcină electrică.

Dacă luăm exemplul parafinei şi lânii frecate împreună, vedem că surplusul de electroni de pe parafină (sarcină negativă) şi deficitul de electroni de pe lână (sarcină pozitivă) crează un dezechilibru de sarcină între cele două. Acest dezechilibru se manifestă printr-o forţă de atracţie între cele două corpuri.

Dacă introducem un fir conductor între cele două corpuri încărcate din punct de vedere electric, vom observa o curgere a electronilor prin acesta datorită faptului că electronii în exces din parafină trec prin fir înapoi pe lână, restabilind dezechilibrul creat.


Dezechilibrul dintre numărul electronilor din atomii parafinei şi cei ai lânii crează o forţă între cele două materiale. Neexistând niciun drum prin care electronii se pot deplasa de pe parafină înapoi pe lână, tot ce poate face această forţă este să atragă cele două corpuri împreună. Acum că un conductor conectează cele două corpuri, această forţă va face ca electronii să se deplaseze într-o direcţie uniformă prin fir, chiar dacă numai pentru un timp foarte scurt, până în momentul în care sarcina electrică este neutralizată în această zona (restabilirea echilibrului), iar forţa dintre cele două materiale se reduce.

Stocarea energiei

Analogia rezervorului de apă

Sarcina electrică formată prin frecarea celor două materiale reprezintă stocarea unei anumite cantităţi de energie. Această energie este asemănătoare energiei înmagazinate într-un rezervor de apă aflat la înălţime, umplut cu ajutorul unei pompe dintr-un bazin aflat la un nivel mai scăzut.


Influenţa gravitaţiei asupra apei din rezervor dă naştere unei forţe ce tinde să deplaseze apa spre nivelul inferior. Dacă construim o ţeavă de la rezervor spre bazin, apa va curge sub influenţa gravitaţiei din rezervor prin ţeavă spre bazin.


Este nevoie de o anumită energie pentru pomparea apei de la un nivel inferior (bazin) la unul superior (rezervor), iar curgerea apei prin ţeavă înapoi la nivelul iniţial constituie eliberarea energiei înmagazinată prin pomparea precedentă.

Dacă apa este pompată la un nivel şi mai ridicat, va fi necesară o energie şi mai mare pentru realizarea acestui lucru, prin urmare, va fi înmagazinată o energie şi mai mare, şi de asemenea, va fi eliberată o energie mai mare decât în cazul precedent.


Cazul electronilor

Electronii nu sunt foarte diferiţi. Dacă frecăm parafina şi lâna împreună, în fapt, „pompăm” electronii de pe „nivelurile” lor normale, dând naştere unei condiţii în care există o forţă între parafină şi lână, datorită faptului că electronii încearcă să-şi recâştige vechile poziţii (şi echilibru în cadrul atomilor respectivi). Forţa de atragere a electronilor spre poziţiile originale în jurul nucleelor pozitive ale atomilor, este analoagă forţei de gravitaţie exercitată asupra apei din rezervor, forţă ce tinde să tragă apa înapoi în poziţia sa originală.

La fel precum pomparea apei la un nivel mai înalt rezultă în înmagazinare de energie, „pomparea” electronilor pentru crearea unui dezechilibru de sarcină electrică duce la înmagazinare de energie prin acel dezechilibru. Asigurarea unui drum prin care electronii să poată curge înapoi spre „nivelurile” lor originale are ca rezultat o eliberare a energiei înmagazinate, asemenea eliberării energiei în cazul rezervorului, atunci când este pus la dispoziţie un drum pe care apa poate să curgă prin intermediul unei ţevi.

Tensiunea electrică

Atunci când electronii se află într-o poziţie statică (prin analogie cu apa dintr-un rezervor), energia înmagazinată în acest caz poartă numele de energie potenţială, pentru că are posibilitatea (potenţialul) eliberării acestei energii în viitor. 

Această energie potenţială, înmagazinată sub forma unui dezechilibru de sarcină electrică capabilă să provoace deplasarea electronilor printr-un conductor, poate fi exprimată printr-un termen denumit tensiune, ceea ce tehnic se traduce prin energie potenţială pe unitate de sarcină electrică, sau ceva ce un fizician ar denumi energie potenţială specifică. Definită în contextul electricităţii statice, tensiunea electrică este măsura lucrului mecanic necesar deplasării unei sarcini unitare dintr-un loc în altul acţionând împotriva forţei ce tinde să menţină sarcinile electrice în echilibru. Din punct de vedere al surselor de putere electrică, tensiunea este cantitatea de energie potenţială disponibilă pe unitate de sarcină, pentru deplasare electronilor printr-un conductor.

Exprimarea tensiunii electrice

Deoarece tensiunea este o expresie a energiei potenţiale, reprezentând posibilitatea sau potenţialul de eliberare a energiei atunci când electronii se deplasează de pe un anumit „nivel” pe un altul, tensiunea are sens doar atunci când este exprimată între două puncte distincte.

Datorită diferenţei dintre înălţimile căderilor de apă, potenţialul de energie eliberată este mai mare prin ţeava din locaţia 2 decât cea din locaţia 1. Principiul poate fi înţeles intuitiv considerând aruncarea unei pietre de la o înălţime de un metru sau de la o înălţime de zece metri: care din ele va avea un impact mai puternic cu solul? Evident, căderea de la o înălţime mai mare implică eliberarea unei cantităţi mai mari de energie (un impact mai violent). .


Nu putem aprecia valoarea energiei înmagazinate într-un rezervor de apă prin simpla măsurare a volumului de apă: trebuie să luăm de asemenea în considerare căderea (distanţa parcursă) apei. Cantitatea de energie eliberată prin căderea unui corp depinde de distanţa dintre punctul iniţial şi cel final al corpului. În mod asemănător, energia potenţială disponibilă pentru a deplasa electronii dintr-un punct în altul depinde de aceste puncte. Prin urmare, tensiune se exprimă tot timpul ca şi o cantitate între două puncte. Este interesant de observat că modelul „căderii” unui corp de la o anumită distanţă la alta este atât de potrivit, încât de multe ori tensiune electrică dintre două puncte mai poartă numele de cădere de tensiune.

Alte modalităţi de generare a tensiunii

Tensiunea poate fi generată si prin alte mijloace decât frecare diferitelor tipuri de materiale împreună. Reacţiile chimice, energia radiantă şi influenţa magnetismului asupra conductorilor sunt câteva modalităţi prin care poate fi produsă tensiunea electrică. Ca şi exemple practice de surse de tensiune putem da bateriile, panourile solare şi generatoarele (precum „alternatorul” de sub capota automobilului). Pentru moment, nu intrăm în detalii legate de funcţionarea fiecărei dintre aceste surse - mai important acum este să înţelegem cum pot fi aplicate sursele de tensiune pentru a crea o deplasare uniformă şi continuă a electronilor prin circuit.

Conectarea surselor de tensiune în circuit

Să luăm pentru început simbolul bateriei electrice şi să construim apoi un circuit pas cu pas. Orice sursă de tensiune, incluzând bateriile, are două puncte de contact electric. În acest caz avem punctul 1 şi punctul 2 de pe desenul de mai sus. Liniile orizontale de lungimi diferite indică faptul că această sursă de tensiune este o baterie, şi mai mult, în ce direcţia va împinge tensiunea acestei bateri electronii prin circuit.



Faptul că liniile orizontale ale bateriei din simbol par să fie separate (prin urmare reprezintă o întrerupere a circuitului prin care electronii nu pot trece) nu trebuie să ne îngrijoreze: în realitate, aceste linii orizontale reprezintă plăci metalice (anod şi catod) introduse într-un lichid sau material semi-solid care nu doar conduce electronii, dar şi generează tensiunea electrică necesară împingerii lor prin circuit datorită interacţiunii acestui material cu plăcile. 

Puteţi observa cele două semne + respectiv - în imediata apropiere a simbolului bateriei. Partea negativă (-) a bateriei este tot timpul cea cu liniuţă mai scurtă, iar partea pozitivă (+) a bateriei este tot timpul capătul cu liniuţa mai lungă. Din moment ce am decis să denumim electronii ca fiind încărcaţi negativ din punct de vedere electric, partea negativă a bateriei este acel capăt ce încearcă să împingă electronii prin circuit, iar partea pozitivă este cea care încearcă să atragă electronii.

Deplasarea electronilor

Atunci când capetele „+” şi „-” ale bateriei nu sunt conectate la un circuit, va exista o tensiune electrică între aceste două puncte, dar nu va exista o deplasare a electronilor prin baterie, pentru că nu există un drum continuu prin care electronii să se poată deplasa.

Acelaşi principu se aplică şi în cazul analogiei rezervorului şi pompei de apă: fără un drum (ţeavă) înapoi spre bazin, energia înmagazinată în rezervor nu poate fi eliberată prin curgerea apei. Odată ce rezervorul este umplut complet, nu mai are loc nicio curgere, oricât de multă presiune ar genera pompa. Trebuie să există un drum complet (circuit) pentru ca apa să curgă continuu dinspre bazin spre rezervor şi înapoi în bazin.


Realizarea unui drum continuu

Putem asigura un astfel de drum pentru baterie prin conectarea unui fir dintr-un capăt al bateriei spre celălalt. Formând un circuit cu ajutorul unei bucle din material conductor, vom iniţia o deplasare continuă a electronilor în direcţia acelor de ceasornic (în acest caz particular).


Curentul electric

Atâta timp cât bateria va continua să producă tensiune electrică, iar continuitatea circuitului electric nu este întreruptă, electronii vor continua să se deplaseze în circuit. Continuând cu analogia apei printr-o ţeavă, curgerea continuă şi uniformă de electroni prin circuit poartă numele de curent. Atâta timp cât sursa de tensiune electrică continuă să „împingă” în aceeaşi direcţie, electronii vor continua să se deplaseze în aceeaşi direcţie prin circuit. Această curgere uni-direcţională a electronilor prin circuit poartă numele de curent continuu, prescurtat c.c.. În următorul volum din această serie vom analiza circuitele electrice în care deplasarea electronilor are loc alternativ, în ambele direcţii: curent alternativ, prescurtat a.c.. Dar pentru moment, vom discuta doar despre circuite de curent continuu.

Curentul electric fiind compus din electroni individuali ce se deplasează la unison printr-un conductor împingând electronii de lângă ei, precum mărgelele dintr-un tub sau apa dintr-o ţeavă, cantitatea deplasată în oricare punct din circuit este aceeaşi (circuit serie). Dacă ar fi să monitorizăm o secţiune transversală dintr-un fir într-un singur circuit, numărând electronii ce trec prin ea, am observa exact aceeaşi cantitate în unitate de timp (curent) în oricare parte a circuitului, indiferent de lungimea sau diametrul conductorului.

Întreruperea circuitului

Dacă întrerupem continuitatea circuitului în oricare punct, curentul electric se va întrerupe în întreg circuitul, iar întreaga tensiune electrică produsă de baterie se va regăsi acum la capetele firelor întrerupte, ce erau înainte conectate.


Observaţi semnele „+” şi „-” puse la capătul firelor unde a fost realizată întreruperea circuitului, şi faptul că ele corespund celor două semne „+” şi „-” adiacente capetelor bateriei. Aceste semne indică direcţia pe care tensiunea electrică o imprimă curgerii electronilor, acea direcţie potenţială ce poartă denumirea de polaritate. Ţineţi minte că tensiunea electrică se măsoară tot timpul între două puncte. Din acest motiv, polaritatea unei căderi de tensiune depinde de asemenea de cele două puncte: faptul că un punct din circuit este notat cu „+” sau „-” depinde de celălalt capăt la care face referire.

Să ne uităm la următorul circuit, în care fiecare colţ al circuitului este marcat printr-un număr de referinţă.


Continuitatea circuitului fiind întreruptă între punctele 2 şi 3, polaritatea căderii de tensiune între punctele 2 şi 3 este „-” pentru punctul 2 şi „+” pentru punctul 3. Polaritatea bateriei (1 „-” şi 4 „+”) încearcă împingerea electronilor prin circuit în sensul acelor de ceasornic din punctul 1 spre 2, 3, 4 şi înapoi la 1.

Să vedem acum ce se întâmplă dacă conectăm punctele 2 şi 3 din nou împreună, dar efectuăm o întrerupere a circuitului între punctele 3 şi 4.


Întreruperea fiind acum între punctele 3 şi 4, polaritatea căderii de tensiune între aceste două puncte este „+” pentru 4 şi „-” pentru 3. Observaţi cu atenţie faptul că semnul punctului 3 este diferit faţă de primul exemplu, acolo unde întreruperea a fost între punctele 2 şi 3 (3 a fost notat cu „+”). Este imposibil de precizat ce semn va avea punctul 3 în acest circuit, fie „+” fie „-”, deoarece polaritate, la fel ca tensiunea, nu reprezintă o caracteristică a unui singur punct, ci depinde tot timpul de două puncte distincte!

Niciun comentariu

Trimiteți un comentariu

BTemplates.com